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Summary. The development and implementation of  a parallel direct self consistent 
field (SCF) Har t r ee -Fock  algorithm, with gradients and random phase approx- 
imation solutions is presented. Important details of the structure of the parallel 
version of DISCO and preliminary results for calculations using the Concurrent 
Supercomputing Consortium Intel Touchstone Delta parallel computer system are 
reported. The data show that the algorithms are efficiently parallelized and that 
throughput of  a one processor CRAY X-MP is reached with about 16 nodes on 
the Delta. The data also indicate sequential code which was not a bottleneck on 
traditional supercomputers, can become time critical on parallel computers. 
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1. Introduction 

The development of ab  in i t io  electronic structure computational schemes has been 
closely coupled with advances in computer hardware. As an example, the 
Direct-SCF approach was developed when the processing speed of  computers 
surpassed their input and output (I/O) storage abilities [1]. In recent years, 
computationally intensive portions of programs have been extensively modified to 
take advantage of  the tremendous processing speed possible with vector processing 
supercomputers [2-4]. Currently, the computing ability of computers constructed 
of  several processing units (parallel computers), each with moderate performance 
when individually compared to a supercomputer, has surpassed the power of 
conventional supercomputers consisting of a few very powerful processors. Most 
existing programs were designed around the concept of serial execution, and thus, 
perform poorly when simply ported to a parallel machine. 

* This work was performed under the auspices of the Office of Basic Energy Sciences, Division of 
Chemical Sciences, U.S. Department of Energy, under contract DE-AC06-76RLO 1830 for Pacific 
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Particularly, programs which require 1/O often perform poorly on parallel 
machines, since these machines have limited I/O capabilities when compared to 
their formidable processing power. This discrepancy between the processing 
speed of parallel computers and their I/O performance capabilities makes them 
plausible candidates for exploiting direct methods, where processing require- 
ments are large and I/O requirements are negligible. In the paper, we will discuss 
our efforts to implement algorithms to take advantage of the capabilities of 
parallel or distributed computers having hundreds of processors. 

2. Implementation 

We have implemented parallel versions of computationally intensive sections of 
the Direct-SCF program DISCO. These subroutines construct matrices from 
combining the two-electron integrals over a Gaussian basis with other variables 
(such as one-electron density elements). The computation of these two-electron 
integrals (Mulliken notation): 

(ij,kl)= f f rp*(1)rp*(1) l ~ok(2)qol(2)dl d2 (1) 

typically require greater than 95% of the time in a direct calculation. Most 
applications require the entire set of two-electron integrals, which increases by 
the fourth power of the size of the basis. There are three places where two- 
electron integrals are required in the program DISCO: 

1. the Fock matrix F, which for closed-shell systems is given by: 
N 

F• = hej + ~ Dkt{(O'[kl) - l( iklj l)} (2) 
k , l =  1 

where h is the one-electron Hamiltonian, D is the one-particle density matrix, 
and N is the number of basis functions. 

2. the nuclear gradient g, defined by: 

8E 0 VNN { , + _ Do - Qij - gx,. i,j=l axm3 
N D o . D k a { ( i j l k l ) _ ½ ( i k l j i )  

i , j ,k , l~ 1 

(3) 

where S is the overlap matrix of the basis, Q is the energy-weighted density 
matrix, and X,, is the mth Cartesian component of nuclear center X. The 
derivatives of the two-electron integrals can be expressed in terms of related 
two-electron integrals. 

3. the random phase approximation (RPA)solution vector product ( Q ) ,  

defined by [5]: 
N 

P i !  = 
k , j =  1 

N 

Qi,= Y~ 
k , j =  1 

{Z~ {2(i l lkj) - (ik l j l )  ) + Yg j { -  2(i l lkj) + (lk l j i )  ) ) 

{ Y~; {2 ( i l l k j )  - (ik Ij l) } + Z ~ j { -  2(i l lk j)  + (Ik Ij i) }} 
(4) 



Direct-SCF algorithm on parallel computer architectures 291 

(z) where Y is the RPA solution vector. For efficiency, the above quantities are 

computed'in an 'AO-driven' fashion, where once an integral is computed, its 
contribution to all appropriate matrix elements is considered. All three matrices 
are linear with respect to the contribution made by a two-electron integral. 
Therefore, the work of computing the two-electron integrals and combining them 
with the appropriate matrix elements to form the desired matrix products could 
be distributed among several processors and the results summed at the finish. It 
is advantageous that the work required for processing integrals scales as the 
fourth power in the number of basis functions (N), while the matrices formed are 
of size N 2 (F, P, and Q) or N (g: the nuclear gradient is constructed as a 3N 
quantity to allow for the option of 'floating' basis functions). The large amount 
of cpu work required to compute the matrix elements with respect to their size 
(approximately N 2 or N 3) coupled with the ability to independently compute 
their contributions make it possible to effectively parallelize the construction of 

F, , and g. 

Two-electron integrals are most often computed a group at a time for 
computational efficiency. The DISCO program computes integrals in blocks 
defined by shells of groups, where the shell refers to the set of angular functions 
and group refers to the functions of same angular momentum having the same 
nuclear center. As an example, using the 3-21G* basis the groups of integrals 
(SPISD) would contain (3 x 1) x (2 x 3) x (3 x 1) x (1 x 6), or 324 integrals. 
For a computation involving first row elements with a double-zeta quality basis, 
the typical integral block would contain approximately 500 integrals. Between 300 
to 500 floating point operations (flops) are required to compute each integral. 

Integral prescreening is used to determine which integrals are nonzero, and 
whenever possible, avoid their computation. The density matrix is used to screen 
integrals at the group level. If the largest density element to be combined with 
the integral group is greater than a certain threshold, the group is computed and 
further screened by their radial prefactors [1]. 

It is possible to construct a 'superatom' basis, where basis functions from 
different centers could be combined into larger groups [6]. Using superatoms, 
integral blocks often contain several thousand integrals. This can be very 
advantageous for computing integrals on a vector-processing computer, where 
processing speed is proportional to the vector length of the shell components of 
the integral block. While the processing speed increases substantially using 
superatoms, the memory requirement for computing integrals also increases, and 
the benefits of integral prescreening, important for Direct-SCF efficiency, de- 
grade with the use of superatoms. Consequently, computing integrals using 
superatom blocks is normally only preferred on large memory vector-processing 
supercomputers. 

Table 1 shows pseudocode for the algorithm used to construct the Fock 
matrix in DISCO. The skeleton Fock matrix is constructed from the "petite' list 
[7] then 'symmetrized' to form the full Fock matrix. The algorithms to construct 
the two-electron portion of the nuclear gradient and the RPA solution product 
are similar. They require a different petite list than the Fock matrix, and 
therefore, have different loop restrictions. The same subroutine is used to 
compute the two-electron integrals in the construction of all three matrices. The 
derivative integrals have different prefactors than the regular integrals, and these 
prefactors are added when a flag is set by the calling routine. 
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Table 1, Pseudocode for serial construction of the Fock matrix 

a Zero F 
b Loop over atoms/, J, K, and L 
c Loop over shells i on atom I 
d Loop over shells Js on atom J 
e Loop over shells k s on atom K 
f Loop over shells 1 s on atom L 
g Loop over symmetry operators /~, ~, and 2? 
h Define integral block (ij]kl) = (i~(L) [ ~(ks S(ls)) 
i Apply density prescreening, if Dma x < t goto k 
j Compute (ij[kl), Combine (ijlkl) with O and add to F 
k End all loops 
m Symmetrize F 
n Add h~ to F 

Max imum parallel efficiency is achieved when all processors carry out  the 
same amoun t  o f  work  (e.g., a set o f  load-balanced tasks). There are three 
commonly  used methods for parallelizing the computa t ion  o f  a lsit o f  unrelated 
tasks. One approach  is to have all processors scan the list and carry out  only a 
por t ion o f  the tasks. This is typically done by indexing the tasks, assigning each 
processor a number  and having the processor complete tasks whose processor 
number  is a modulo  o f  the task index. One of  many  ways to code this modulo  
counter  is: 

nproc  = nnodes( ) 
me = nodeid( ) 
ipcount  = (me - 1) 
do 

ipcount  = ipcount  + 1 
i f(mod(ipcount ,nproc) .eq.0)  then 

"do  work"  
endif 

enddo 

!return number  o f  processes 
!returns process id 0 to n p r o c -  1 
!initialize counter  

!increment counter  

Using this approach,  all processors are responsible for the same number  o f  
tasks. Only when all tasks are about  the same size, all processors have the 
same computa t ional  power, and there are a large number  o f  tasks, is the 
work  load balanced. Another  approach,  called the master/slave topology,  as- 
signs one processor (master) to allot tasks to the other processors (slaves). 
Typically the master  will a t tempt  load balancing by assigning new tasks to idle 
slaves or  slaves as they become idle. The third technique, 'which uses a 
counter  shared among  all processes, is a hybrid approach  of  the first two. 
The shared counter  methodology  uses the loop structure o f  the modulo  
method.  Instead o f  matching the task id to the process number,  the match  is 
made with the shared counter  and then the shared counter  is incremented. This 
allows the "mas te r"  process to be involved in the "real"  work  and allows 
dynamic  load balancing. This algori thm requires some sort o f  mult i tasking or 
interrupt handling. 
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There are advantages and disadvantages to each of these task schedul- 
ing techniques. The master/slave topology and the shared counter technique 
require communication between the master and slaves while the modulo topol- 
ogy does not. If communication time is expensive with respect to the task 
computation time, the modulo topology is probably favored. On the other 
hand, if the processors do not have the same power (such as a distributed 
network of heterogeneous workstations with or without an interactive load), or 
the task sizes are typically quite large, but vary substantially in size, the 
master/slave topology or the shared counter approach is probably favored. The 
two-electron routines in DISCO have been parallelized using the master/slave 
concept. For each two-electron routine, the master loops over the list of 
integral blocks and assigns the task of computing an integral block to a 
particular slave. The slave is then responsible for computing the integrals and 
their post-processing to form their contribution to the slave's portion of the 
Fock matrix. Along with other information, slaves receive density prescreen- 
ing information used to further prescreen integrals based on radial prefactors 
[1]. 

The parallelized construction of the Fock matrix will be discussed, but 
the ideas are the same for the nuclear gradient and RPA vector forma- 
tion. For the construction of the Fock matrix, in order to minimize communi- 
cation between processors, each slave constructs its own copy of the Fock 
matrix from the subset of integral blocks it was requested to compute by the 
master. Therefore, each slave is required to hold both the entire F and D 
matrices in its memory. Consequences of this requirement will be addressed in 
the Discussion section. The pseudocode for the parallelized Fock buildup is 
shown in Table 2. Note that the modifications required for the master 
portion are minor. The master must distribute the density matrix to all slaves 
(a*). The master must find an idle slave to process a block of integrals (j*). 
After all looping has been completed, the partial Fock matrices are summed 
and returned to the master (I*). The code required for the slave routine is 
minimal. 

The communication between the master and the slaves, along with starting 
up and killing the slave processes was carried out using the TCGMSG [8] 
message passing toolkit. While TCGMSG supports asynchronous communica- 
tions on some hardware platforms, we chose to only use synchronous calls to 
maintain code compatibility across a wide range of systems [9]. The required 
synchronous message passing for some hardware may be removed in future 
versions of TCGMSG. The compatibility over many systems has the advantage 
in that development and debugging of the algorithms were conducted on local 
sun workstations, whereas the results discussed in this paper were carried out 
remotely on the Intel Touchstone Delta system. 

Initial runs on the Delta indicated that communication costs between the 
master and slaves were degrading performance when only one block of inte- 
grals was assigned as a task to the slaves. The program was modified to include 
ten blocks of integrals per task, effectively cutting the communication time by a 
factor of ten. This is simply an effective increase in the granularity of the 
problem. All results given in this paper were carried out using ten blocks of 
integrals per task. The decrease in communication time by grouping blocks of 
integrals in tasks is expected to be partially off'set by decreased load balancing 
and the optimum task size will be system and problem dependent. Further 
studies on optimum task size are planned. 
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Table 2. Structure for parallel construction of the Fock matrix 

MASTER CODE 

a • 

b 
C 

d 
e 

f 
g 
h 
i 

j ~  

k 
l* 
m 

n 

Send D to slaves 
Loop over atoms/, aT, K, and L 

Loop over shells i on atom I 
Loop over shells j, on atom J 

Loop over shells k, on atom K 
Loop over shells l, on atom L 

Loop over symmetry operators /~, S, and i? 
Define integral block (ijlkl) = (i~(L) n ~(ks~(z,)) 
Apply density prescreeuing, if Dma x < t goto k 
Find slave to compute (ijlkl) 

End all loops 
Sum all F 
Symmetrize F 
Add h I to F 

SLAVE CODE 

a* Receive D from master and zero F 
J l *  receive (ijlkl) request from master 
J2* if requested to quit goto l* 
J3* Compute (ijlkl), Combine (ij[kl) with D and add to F 
J4* goto Jl* 
l* Sum F and send to master 

3. Results 

Initial calculations on the Delta machine were carried out  on the molecule 
imidazole (C3NaH4) using the cc-pvdz, aug-cc-pvdz, and cc-pvtz correlat ion 
consistent basis sets [10, 11]. The total numbers  o f  contracted basis functions for 
these calculations were 95, 161, and 235, respectively. All Delta times were 
obtained in a stand-alone environment.  We expect the timings to increase f rom 
a multiuser environment  due to performance degradation.  The time (in seconds) 
required to construct  the Fock  matrix using varying numbers  o f  nodes is given 
in Table 3. For  comparison,  the time required for the same basis using D I S C O  
on a single processor o f  a C R A Y  X - M P  is also given. All C R A Y  timings were 
obtained a multiuser environment  unless otherwise noted. Previous studies have 
indicated about  a 10% increase o f  time for running D I S C O  in a multiuser 
environment  on a C R A Y  versus a dedicated environment.  

The timings on the C R A Y  X - M P  reflect running the calculation using 
superatoms while the timings for the Delta were obtained without  using super- 
atoms. The C R A Y  X - M P  is typically three times faster when using superatoms 
[6], while the Delta would be expected to be a factor  o f  two slower when using 
superatoms. Calculations previously performed on similar systems with the 
C R A Y  X - M P  (using its hardware performance moni tor)  indicate that  approxi-  
mately twice as many  operat ions (ops) are needed to construct  the Fock  matrix 
using superatoms as opposed to not  using them (due to less effective integral 
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Table 3. Time a to construct Fock matrix for imidazole with 
different bases on different number of nodes 

Nodes cc-pvdz aug-cc-pvdz cc-pvtz 

2 442.6 3470.5 11917.1 
16 62.1 232.9 797.7 
64 16.4 56.9 193.3 
90 12.9 41.0 138.6 

128 11.0 29.5 99.0 
256 9.7 16.5 54.8 
320 9.8 14.3 47.4 
400 9.1 13.0 42.2 
512 9.0 12.0 38.7 
(1)X-MP b 47.7 223.2 664.6 

a time in seconds on Intel Delta Machine 
b Time in seconds on one processor of a CRAY X-MP4-64 
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prescreening). But on the CRAY X-MP, the longer vector lengths associated 
with using superatoms increases the performance of the algorithm by about  a 
factor of  six, netting a performance increase of  a factor of  three. On pipelined 
scalar machines such as the Delta, there is little if any increase in performance 
using longer vectors, and the additional ops required to construct the Fock 
matrix using superatoms are not balanced by an effective decrease in execution 
time. Comparison of  timings between the CRAY X-MP and the Delta indicate 
that about  sixteen nodes of  the Delta are required for the effective throughput of  
a CRAY X-MP. Using 512 nodes of  the Delta increases throughput for the 
larger two bases to about  18 times that of  one CRAY X-MP processor. Figure 
1 shows the speedup curves for the three bases along with the ideal limit of  speed 
using the master/slave parallel topology (i.e., speedup is equal to the number of  
slaves) and the speedup based on the Amdahl 's  law model for the cc-pvtz basis: 

Time(1 node) _ T~ + Tp (5) 
Speedup = Time(N nodes) Ts -~-Tp 

N 

where T~ is the time required for the serial portion of the routine and Tp is the 
time required for the parallelizable portion. For  the cc-pvtz case, T~ was 
measured to be five seconds. Three seconds are spent in the routine which 
symmetrizes the 'skeleton' Fock matrix, and the remainder is spent computing 
expectation values (i.e. two-electron energy). The speedup for the smallest basis 
(cc-pvdz) is rather poor, reaching only a maximum of about  fifty (50) for 512 
processors. On the other hand, the speedups for the two larger bases are linear 
up to about  200 nodes and increase up to a factor of  300 for 512 nodes. The 
speedup agrees well with the predicted model up to 128 nodes. Above 128 nodes, 
the actual speedup is significantly less than predicted. 

Deficiencies in the speedup model include: (i) an increase in time associated 
with broadcasting the density matrix to the slave nodes and summing up the 
Fock contributions from the slaves, which should increase with respect to the 
number of  the nodes; (ii) the time needed to start up the nodes and wait for them 
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to finish after all tasks have been issued, which should scale linearly with respect 
to the number of nodes; (iii) inefficiencies in computing from poorer load 
balancing with the increase of slave processors; (iv) and the partial overlap of the 
serial time (such as master/slave communication) with the parallel time. 

Studies were carried out to investigate some of these factors. Out of the 
39 sec used to construct the Fock matrix with 512 nodes, five seconds were 
required to complete the serial portion of the routine (Ts). Two seconds were 
required to broadcast the density matrix to the slaves and sum up the Fock 
matrix (Table 2 master code a* and 1"). 24 sec were required for the master to 
complete the required loops to generate the integral tasks (Table 2 master code 
b i). Of the remaining eight seconds used, five were required for the communi- 
cation calls between the master and slave (Table 2 master code j*), and three 
were idle time spent by the master waiting for an available slave (Table 2 master 
code j*). For the actual timings to adhere to Amdahl's law, the sequential time 
the master spends generating tasks and communicating with slaves would have 
to completely overlap with the time spent by the slaves doing the parallel work. 
Only the two seconds required for the broadcast and global sum could not 
overlap with the parallel time, but these two seconds do not account for the 
discrepancy between the actual times and the predicted ones. Rather, inefficien- 
cies in the Fock matrix buildup are likely the result of the master not being able 
to keep all of the slaves busy. This could be removed by either having the master 
assign larger tasks, or having a sublevel of masters, each assigning tasks to their 
own pool of slaves. 

Table 4 shows the timings and speedups for computing the two-electron 
portion of the nuclear gradient for the imidazole molecule using the cc-pvtz basis 
(235 contracted basis functions). The speedup is also given for the model in Eq. 
(5). For logistical reasons, it was not possible to construct the gradient on only 
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Table 4. Time a to construct two-electron portion of 
nuclear gradient for imidazole with cc-pvtz basis on 
different number of nodes. 

Nodes Time Speedup 
(Actual) (Model) b 

2 112,395.0 ° 1.0 1.0 
16 7,494.9 15.0 15.0 
36 3,213.0 35.0 35.0 
64 1,785.7 62.9 63.0 
90 1,264.8 88.9 88.9 

128 887.0 126.7 126.7 
256 443.6 253.4 253.9 
320 356.0 315.7 317.2 
400 286.6 392.2 396.3 
512 224.1 501.5 506.5 

a Time in seconds on Intel Delta Machine 
b See text for complete description 
c time estimated (see text) 

two nodes, so this time was estimated using the model to replicate the actual 
times for up to 64 processors. Fitting to the model predicted a total time of 
112,395sec with a T~ of 1.95 sec. For  these computations, the predictive 
speedups based on the Amdahl  model are highly accurate. The time required to 
compute the derivative integral blocks' contribution to the two-electron portion 
of the nuclear gradient is an order of  magnitude greater than the associated time 
required for the Fock matrix. This allows for a better overlap between the serial 
portion of the master time associated with generating tasks with the parallel time 
required of  the slaves to compute the tasks. Additionally, the slaves are less likely 
to be idle if they have larger tasks. 

Final calculations were carried out on the 38 a tom organic molecule 
(C1703H18 , see Fig. 2) bis(2,5-dimethyl phenyl)carbonate mentioned by Liithi et 
al., in their paper on the parallelization of  Direct-SCF for shared-memory 
machines [ 12]. They were able to decrease the time required to construct the 
Fock matrix from two hours on one processor of  a dedicated CRAY Y-MP/8- 
128 to 15 minutes using all eight processors in parallel for a speedup of 7.91. For  
a comparison, the same computation required 500 sec on 256 nodes of  the Delta 
and 356 sec on 512 nodes. 

We have tested the parallel implementation of the RPA polarizabilities, but 
do not have results to discuss in this paper. The expected speedups should be 
similar to those seen for the construction of the Fock matrix. Performance 
analysis for the RPA code will be published elsewhere [9]. 

4. Conclusions 

The above implementation requires complete copies of  both the Fock matrix 
(nuclear gradient or RPA vector), and the density matrix (RPA solution vector) 
in memory on each node. Currently, each node of the Delta has 16 megabytes of  
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Fig. 2. Bis(2,6-dimethyl phenyl)carbonate 

physical memory.  This allows us to carry out calculations on systems up to 
about 400 basis functions. By partitioning F and D across several nodes, it 
would be possible to investigate much larger systems. A drawback of this 
approach is either the added communication required to send F and D elements 
between nodes, or leaving the AO-driven regime and redundantly compute 
integrals in a Fock matrix driven manner (i.e. compute all the integrals neces- 
sary for the Fock matrix elements on the praticular node). 

Our studies indicate that computationally intensive sections of  existing 
programs can be readily modified to take advantage of the processing power 
available on parallel machines in the regime of a few hundred processors. 
Currently, the routines we have parallelized are most efficient for studies on 
larger chemical systems, where the computational  costs are severe and use of  
parallel machines is desirable. 

While Amdahl 's  law oversimplified the speedup for the construction of  the 
Fock matrix, it emphasizes the problem of efficiently using large numbers of  
processors. The time required to compute the one-electron portion of the 
nuclear gradient for imidazole with the cc-pvtz basis was 645 sec on the Delta, 
and has become the bottleneck for computing the nuclear gradient on a large 
number of  processors. Likewise, the total time per SCF iteration was 78 sec, 
which is only a speedup of 150 for 512 nodes. In order to gain overall efficiency 
for a large number of  processors, large portions of  the existing serial code, 
which on a single processor is computationally insignificant, will have to be 
modified. 
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