
Theor Chim Acta (1993) 84:289-299 Theoretica
Chimica Acta
© Springer-Verlag 1993

An efficient implementation of the direct-SCF algorithm
on parallel computer architectures*

Martin Feyereisen** and Rick A. Kendall
Molecular Science Software Group, Theory, Modeling and Simulation Program, Molecular Science
Research Center, Pacific Northwest Laboratory, Richland, WA 99352, USA

Received October 1, 1991/Accepted January 14, 1992

Summary. The development and implementation of a parallel direct self consistent
field (SCF) Har t r ee -Fock algorithm, with gradients and random phase approx-
imation solutions is presented. Important details of the structure of the parallel
version of DISCO and preliminary results for calculations using the Concurrent
Supercomputing Consortium Intel Touchstone Delta parallel computer system are
reported. The data show that the algorithms are efficiently parallelized and that
throughput of a one processor CRAY X-MP is reached with about 16 nodes on
the Delta. The data also indicate sequential code which was not a bottleneck on
traditional supercomputers, can become time critical on parallel computers.

Key words: Direct-SCF a lgo r i t hm- DISCO

1. Introduction

The development of ab in i t io electronic structure computational schemes has been
closely coupled with advances in computer hardware. As an example, the
Direct-SCF approach was developed when the processing speed of computers
surpassed their input and output (I/O) storage abilities [1]. In recent years,
computationally intensive portions of programs have been extensively modified to
take advantage of the tremendous processing speed possible with vector processing
supercomputers [2-4]. Currently, the computing ability of computers constructed
of several processing units (parallel computers), each with moderate performance
when individually compared to a supercomputer, has surpassed the power of
conventional supercomputers consisting of a few very powerful processors. Most
existing programs were designed around the concept of serial execution, and thus,
perform poorly when simply ported to a parallel machine.

* This work was performed under the auspices of the Office of Basic Energy Sciences, Division of
Chemical Sciences, U.S. Department of Energy, under contract DE-AC06-76RLO 1830 for Pacific
Northwest Laboratory which is operated by Battelle Memorial Institute for the U.S. Department of
Energy.
** Present address: Cray Research Inc., 655E Lone Oak Dr. Eagan, MN 55121, USA

290 M. Feyereisen and R. A. Kendall

Particularly, programs which require 1/O often perform poorly on parallel
machines, since these machines have limited I/O capabilities when compared to
their formidable processing power. This discrepancy between the processing
speed of parallel computers and their I/O performance capabilities makes them
plausible candidates for exploiting direct methods, where processing require-
ments are large and I/O requirements are negligible. In the paper, we will discuss
our efforts to implement algorithms to take advantage of the capabilities of
parallel or distributed computers having hundreds of processors.

2. Implementation

We have implemented parallel versions of computationally intensive sections of
the Direct-SCF program DISCO. These subroutines construct matrices from
combining the two-electron integrals over a Gaussian basis with other variables
(such as one-electron density elements). The computation of these two-electron
integrals (Mulliken notation):

(ij,kl)= f f rp*(1)rp*(1) l ~ok(2)qol(2)dl d2 (1)

typically require greater than 95% of the time in a direct calculation. Most
applications require the entire set of two-electron integrals, which increases by
the fourth power of the size of the basis. There are three places where two-
electron integrals are required in the program DISCO:

1. the Fock matrix F, which for closed-shell systems is given by:
N

F• = hej + ~ Dkt{(O'[kl) - l(iklj l)} (2)
k , l = 1

where h is the one-electron Hamiltonian, D is the one-particle density matrix,
and N is the number of basis functions.

2. the nuclear gradient g, defined by:

8E 0 VNN { , + _ Do - Qij - gx,. i,j=l axm3
N D o . D k a { (i j l k l) _ ½ (i k l j i)

i , j ,k , l~ 1

(3)

where S is the overlap matrix of the basis, Q is the energy-weighted density
matrix, and X,, is the mth Cartesian component of nuclear center X. The
derivatives of the two-electron integrals can be expressed in terms of related
two-electron integrals.

3. the random phase approximation (RPA)solution vector product (Q) ,

defined by [5]:
N

P i ! =
k , j = 1

N

Qi,= Y~
k , j = 1

{Z~ {2(i l lkj) - (ik l j l)) + Yg j { - 2(i l lkj) + (lk l j i)))

{ Y~; {2 (i l l k j) - (ik Ij l) } + Z ~ j { - 2(i l lk j) + (Ik Ij i) }}
(4)

Direct-SCF algorithm on parallel computer architectures 291

(z) where Y is the RPA solution vector. For efficiency, the above quantities are

computed'in an 'AO-driven' fashion, where once an integral is computed, its
contribution to all appropriate matrix elements is considered. All three matrices
are linear with respect to the contribution made by a two-electron integral.
Therefore, the work of computing the two-electron integrals and combining them
with the appropriate matrix elements to form the desired matrix products could
be distributed among several processors and the results summed at the finish. It
is advantageous that the work required for processing integrals scales as the
fourth power in the number of basis functions (N), while the matrices formed are
of size N 2 (F, P, and Q) or N (g: the nuclear gradient is constructed as a 3N
quantity to allow for the option of 'floating' basis functions). The large amount
of cpu work required to compute the matrix elements with respect to their size
(approximately N 2 or N 3) coupled with the ability to independently compute
their contributions make it possible to effectively parallelize the construction of

F, , and g.

Two-electron integrals are most often computed a group at a time for
computational efficiency. The DISCO program computes integrals in blocks
defined by shells of groups, where the shell refers to the set of angular functions
and group refers to the functions of same angular momentum having the same
nuclear center. As an example, using the 3-21G* basis the groups of integrals
(SPISD) would contain (3 x 1) x (2 x 3) x (3 x 1) x (1 x 6), or 324 integrals.
For a computation involving first row elements with a double-zeta quality basis,
the typical integral block would contain approximately 500 integrals. Between 300
to 500 floating point operations (flops) are required to compute each integral.

Integral prescreening is used to determine which integrals are nonzero, and
whenever possible, avoid their computation. The density matrix is used to screen
integrals at the group level. If the largest density element to be combined with
the integral group is greater than a certain threshold, the group is computed and
further screened by their radial prefactors [1].

It is possible to construct a 'superatom' basis, where basis functions from
different centers could be combined into larger groups [6]. Using superatoms,
integral blocks often contain several thousand integrals. This can be very
advantageous for computing integrals on a vector-processing computer, where
processing speed is proportional to the vector length of the shell components of
the integral block. While the processing speed increases substantially using
superatoms, the memory requirement for computing integrals also increases, and
the benefits of integral prescreening, important for Direct-SCF efficiency, de-
grade with the use of superatoms. Consequently, computing integrals using
superatom blocks is normally only preferred on large memory vector-processing
supercomputers.

Table 1 shows pseudocode for the algorithm used to construct the Fock
matrix in DISCO. The skeleton Fock matrix is constructed from the "petite' list
[7] then 'symmetrized' to form the full Fock matrix. The algorithms to construct
the two-electron portion of the nuclear gradient and the RPA solution product
are similar. They require a different petite list than the Fock matrix, and
therefore, have different loop restrictions. The same subroutine is used to
compute the two-electron integrals in the construction of all three matrices. The
derivative integrals have different prefactors than the regular integrals, and these
prefactors are added when a flag is set by the calling routine.

292 M. Feyereisen and R. A. Kendall

Table 1, Pseudocode for serial construction of the Fock matrix

a Zero F
b Loop over atoms/, J, K, and L
c Loop over shells i on atom I
d Loop over shells Js on atom J
e Loop over shells k s on atom K
f Loop over shells 1 s on atom L
g Loop over symmetry operators /~, ~, and 2?
h Define integral block (ij]kl) = (i~(L) [~(ks S(ls))
i Apply density prescreening, if Dma x < t goto k
j Compute (ij[kl), Combine (ijlkl) with O and add to F
k End all loops
m Symmetrize F
n Add h~ to F

Max imum parallel efficiency is achieved when all processors carry out the
same amoun t o f work (e.g., a set o f load-balanced tasks). There are three
commonly used methods for parallelizing the computa t ion o f a lsit o f unrelated
tasks. One approach is to have all processors scan the list and carry out only a
por t ion o f the tasks. This is typically done by indexing the tasks, assigning each
processor a number and having the processor complete tasks whose processor
number is a modulo o f the task index. One of many ways to code this modulo
counter is:

nproc = nnodes()
me = nodeid()
ipcount = (me - 1)
do

ipcount = ipcount + 1
i f(mod(ipcount ,nproc) .eq.0) then

"do work"
endif

enddo

!return number o f processes
!returns process id 0 to n p r o c - 1
!initialize counter

!increment counter

Using this approach, all processors are responsible for the same number o f
tasks. Only when all tasks are about the same size, all processors have the
same computa t ional power, and there are a large number o f tasks, is the
work load balanced. Another approach, called the master/slave topology, as-
signs one processor (master) to allot tasks to the other processors (slaves).
Typically the master will a t tempt load balancing by assigning new tasks to idle
slaves or slaves as they become idle. The third technique, 'which uses a
counter shared among all processes, is a hybrid approach of the first two.
The shared counter methodology uses the loop structure o f the modulo
method. Instead o f matching the task id to the process number, the match is
made with the shared counter and then the shared counter is incremented. This
allows the "mas te r" process to be involved in the "real" work and allows
dynamic load balancing. This algori thm requires some sort o f mult i tasking or
interrupt handling.

Direct-SCF algorithm on parallel computer architectures 293

There are advantages and disadvantages to each of these task schedul-
ing techniques. The master/slave topology and the shared counter technique
require communication between the master and slaves while the modulo topol-
ogy does not. If communication time is expensive with respect to the task
computation time, the modulo topology is probably favored. On the other
hand, if the processors do not have the same power (such as a distributed
network of heterogeneous workstations with or without an interactive load), or
the task sizes are typically quite large, but vary substantially in size, the
master/slave topology or the shared counter approach is probably favored. The
two-electron routines in DISCO have been parallelized using the master/slave
concept. For each two-electron routine, the master loops over the list of
integral blocks and assigns the task of computing an integral block to a
particular slave. The slave is then responsible for computing the integrals and
their post-processing to form their contribution to the slave's portion of the
Fock matrix. Along with other information, slaves receive density prescreen-
ing information used to further prescreen integrals based on radial prefactors
[1].

The parallelized construction of the Fock matrix will be discussed, but
the ideas are the same for the nuclear gradient and RPA vector forma-
tion. For the construction of the Fock matrix, in order to minimize communi-
cation between processors, each slave constructs its own copy of the Fock
matrix from the subset of integral blocks it was requested to compute by the
master. Therefore, each slave is required to hold both the entire F and D
matrices in its memory. Consequences of this requirement will be addressed in
the Discussion section. The pseudocode for the parallelized Fock buildup is
shown in Table 2. Note that the modifications required for the master
portion are minor. The master must distribute the density matrix to all slaves
(a*). The master must find an idle slave to process a block of integrals (j*).
After all looping has been completed, the partial Fock matrices are summed
and returned to the master (I*). The code required for the slave routine is
minimal.

The communication between the master and the slaves, along with starting
up and killing the slave processes was carried out using the TCGMSG [8]
message passing toolkit. While TCGMSG supports asynchronous communica-
tions on some hardware platforms, we chose to only use synchronous calls to
maintain code compatibility across a wide range of systems [9]. The required
synchronous message passing for some hardware may be removed in future
versions of TCGMSG. The compatibility over many systems has the advantage
in that development and debugging of the algorithms were conducted on local
sun workstations, whereas the results discussed in this paper were carried out
remotely on the Intel Touchstone Delta system.

Initial runs on the Delta indicated that communication costs between the
master and slaves were degrading performance when only one block of inte-
grals was assigned as a task to the slaves. The program was modified to include
ten blocks of integrals per task, effectively cutting the communication time by a
factor of ten. This is simply an effective increase in the granularity of the
problem. All results given in this paper were carried out using ten blocks of
integrals per task. The decrease in communication time by grouping blocks of
integrals in tasks is expected to be partially off'set by decreased load balancing
and the optimum task size will be system and problem dependent. Further
studies on optimum task size are planned.

294 M. Feyereisen and R. A. Kendall

Table 2. Structure for parallel construction of the Fock matrix

MASTER CODE

a •

b
C

d
e

f
g
h
i

j ~

k
l*
m

n

Send D to slaves
Loop over atoms/, aT, K, and L

Loop over shells i on atom I
Loop over shells j, on atom J

Loop over shells k, on atom K
Loop over shells l, on atom L

Loop over symmetry operators /~, S, and i?
Define integral block (ijlkl) = (i~(L) n ~(ks~(z,))
Apply density prescreeuing, if Dma x < t goto k
Find slave to compute (ijlkl)

End all loops
Sum all F
Symmetrize F
Add h I to F

SLAVE CODE

a* Receive D from master and zero F
J l * receive (ijlkl) request from master
J2* if requested to quit goto l*
J3* Compute (ijlkl), Combine (ij[kl) with D and add to F
J4* goto Jl*
l* Sum F and send to master

3. Results

Initial calculations on the Delta machine were carried out on the molecule
imidazole (C3NaH4) using the cc-pvdz, aug-cc-pvdz, and cc-pvtz correlat ion
consistent basis sets [10, 11]. The total numbers o f contracted basis functions for
these calculations were 95, 161, and 235, respectively. All Delta times were
obtained in a stand-alone environment. We expect the timings to increase f rom
a multiuser environment due to performance degradation. The time (in seconds)
required to construct the Fock matrix using varying numbers o f nodes is given
in Table 3. For comparison, the time required for the same basis using D I S C O
on a single processor o f a C R A Y X - M P is also given. All C R A Y timings were
obtained a multiuser environment unless otherwise noted. Previous studies have
indicated about a 10% increase o f time for running D I S C O in a multiuser
environment on a C R A Y versus a dedicated environment.

The timings on the C R A Y X - M P reflect running the calculation using
superatoms while the timings for the Delta were obtained without using super-
atoms. The C R A Y X - M P is typically three times faster when using superatoms
[6], while the Delta would be expected to be a factor o f two slower when using
superatoms. Calculations previously performed on similar systems with the
C R A Y X - M P (using its hardware performance moni tor) indicate that approxi-
mately twice as many operat ions (ops) are needed to construct the Fock matrix
using superatoms as opposed to not using them (due to less effective integral

Direct-SCF algorithm on parallel computer architectures

Table 3. Time a to construct Fock matrix for imidazole with
different bases on different number of nodes

Nodes cc-pvdz aug-cc-pvdz cc-pvtz

2 442.6 3470.5 11917.1
16 62.1 232.9 797.7
64 16.4 56.9 193.3
90 12.9 41.0 138.6

128 11.0 29.5 99.0
256 9.7 16.5 54.8
320 9.8 14.3 47.4
400 9.1 13.0 42.2
512 9.0 12.0 38.7
(1)X-MP b 47.7 223.2 664.6

a time in seconds on Intel Delta Machine
b Time in seconds on one processor of a CRAY X-MP4-64

295

prescreening). But on the CRAY X-MP, the longer vector lengths associated
with using superatoms increases the performance of the algorithm by about a
factor of six, netting a performance increase of a factor of three. On pipelined
scalar machines such as the Delta, there is little if any increase in performance
using longer vectors, and the additional ops required to construct the Fock
matrix using superatoms are not balanced by an effective decrease in execution
time. Comparison of timings between the CRAY X-MP and the Delta indicate
that about sixteen nodes of the Delta are required for the effective throughput of
a CRAY X-MP. Using 512 nodes of the Delta increases throughput for the
larger two bases to about 18 times that of one CRAY X-MP processor. Figure
1 shows the speedup curves for the three bases along with the ideal limit of speed
using the master/slave parallel topology (i.e., speedup is equal to the number of
slaves) and the speedup based on the Amdahl 's law model for the cc-pvtz basis:

Time(1 node) _ T~ + Tp (5)
Speedup = Time(N nodes) Ts -~-Tp

N

where T~ is the time required for the serial portion of the routine and Tp is the
time required for the parallelizable portion. For the cc-pvtz case, T~ was
measured to be five seconds. Three seconds are spent in the routine which
symmetrizes the 'skeleton' Fock matrix, and the remainder is spent computing
expectation values (i.e. two-electron energy). The speedup for the smallest basis
(cc-pvdz) is rather poor, reaching only a maximum of about fifty (50) for 512
processors. On the other hand, the speedups for the two larger bases are linear
up to about 200 nodes and increase up to a factor of 300 for 512 nodes. The
speedup agrees well with the predicted model up to 128 nodes. Above 128 nodes,
the actual speedup is significantly less than predicted.

Deficiencies in the speedup model include: (i) an increase in time associated
with broadcasting the density matrix to the slave nodes and summing up the
Fock contributions from the slaves, which should increase with respect to the
number of the nodes; (ii) the time needed to start up the nodes and wait for them

296 M. Feyereisen and R. A. Kendall

500-

450"

400

350

300

250

200

15° 1 100
i

50

0
0

s /

ss J
bs S

s f J

sJ S

s J S

S / ' /z

s ~
s

s
s

s

50 100 150 200 250 300 350 400 450 500
Nodes

Fig. 1. Speedup curves for
constructing Fock matrix of
imidazole ~ CCDZ - I ~
ACCDZ ~ CCTZ - - - - -
Ideal* - - Model* (*See
text for complete description)

to finish after all tasks have been issued, which should scale linearly with respect
to the number of nodes; (iii) inefficiencies in computing from poorer load
balancing with the increase of slave processors; (iv) and the partial overlap of the
serial time (such as master/slave communication) with the parallel time.

Studies were carried out to investigate some of these factors. Out of the
39 sec used to construct the Fock matrix with 512 nodes, five seconds were
required to complete the serial portion of the routine (Ts). Two seconds were
required to broadcast the density matrix to the slaves and sum up the Fock
matrix (Table 2 master code a* and 1"). 24 sec were required for the master to
complete the required loops to generate the integral tasks (Table 2 master code
b i). Of the remaining eight seconds used, five were required for the communi-
cation calls between the master and slave (Table 2 master code j*), and three
were idle time spent by the master waiting for an available slave (Table 2 master
code j*). For the actual timings to adhere to Amdahl's law, the sequential time
the master spends generating tasks and communicating with slaves would have
to completely overlap with the time spent by the slaves doing the parallel work.
Only the two seconds required for the broadcast and global sum could not
overlap with the parallel time, but these two seconds do not account for the
discrepancy between the actual times and the predicted ones. Rather, inefficien-
cies in the Fock matrix buildup are likely the result of the master not being able
to keep all of the slaves busy. This could be removed by either having the master
assign larger tasks, or having a sublevel of masters, each assigning tasks to their
own pool of slaves.

Table 4 shows the timings and speedups for computing the two-electron
portion of the nuclear gradient for the imidazole molecule using the cc-pvtz basis
(235 contracted basis functions). The speedup is also given for the model in Eq.
(5). For logistical reasons, it was not possible to construct the gradient on only

Direct-SCF algorithm on parallel computer architectures 297

Table 4. Time a to construct two-electron portion of
nuclear gradient for imidazole with cc-pvtz basis on
different number of nodes.

Nodes Time Speedup
(Actual) (Model) b

2 112,395.0 ° 1.0 1.0
16 7,494.9 15.0 15.0
36 3,213.0 35.0 35.0
64 1,785.7 62.9 63.0
90 1,264.8 88.9 88.9

128 887.0 126.7 126.7
256 443.6 253.4 253.9
320 356.0 315.7 317.2
400 286.6 392.2 396.3
512 224.1 501.5 506.5

a Time in seconds on Intel Delta Machine
b See text for complete description
c time estimated (see text)

two nodes, so this time was estimated using the model to replicate the actual
times for up to 64 processors. Fitting to the model predicted a total time of
112,395sec with a T~ of 1.95 sec. For these computations, the predictive
speedups based on the Amdahl model are highly accurate. The time required to
compute the derivative integral blocks' contribution to the two-electron portion
of the nuclear gradient is an order of magnitude greater than the associated time
required for the Fock matrix. This allows for a better overlap between the serial
portion of the master time associated with generating tasks with the parallel time
required of the slaves to compute the tasks. Additionally, the slaves are less likely
to be idle if they have larger tasks.

Final calculations were carried out on the 38 a tom organic molecule
(C1703H18 , see Fig. 2) bis(2,5-dimethyl phenyl)carbonate mentioned by Liithi et
al., in their paper on the parallelization of Direct-SCF for shared-memory
machines [12]. They were able to decrease the time required to construct the
Fock matrix from two hours on one processor of a dedicated CRAY Y-MP/8-
128 to 15 minutes using all eight processors in parallel for a speedup of 7.91. For
a comparison, the same computation required 500 sec on 256 nodes of the Delta
and 356 sec on 512 nodes.

We have tested the parallel implementation of the RPA polarizabilities, but
do not have results to discuss in this paper. The expected speedups should be
similar to those seen for the construction of the Fock matrix. Performance
analysis for the RPA code will be published elsewhere [9].

4. Conclusions

The above implementation requires complete copies of both the Fock matrix
(nuclear gradient or RPA vector), and the density matrix (RPA solution vector)
in memory on each node. Currently, each node of the Delta has 16 megabytes of

298 M. Feyereisen and R. A. Kendall

Fig. 2. Bis(2,6-dimethyl phenyl)carbonate

physical memory. This allows us to carry out calculations on systems up to
about 400 basis functions. By partitioning F and D across several nodes, it
would be possible to investigate much larger systems. A drawback of this
approach is either the added communication required to send F and D elements
between nodes, or leaving the AO-driven regime and redundantly compute
integrals in a Fock matrix driven manner (i.e. compute all the integrals neces-
sary for the Fock matrix elements on the praticular node).

Our studies indicate that computationally intensive sections of existing
programs can be readily modified to take advantage of the processing power
available on parallel machines in the regime of a few hundred processors.
Currently, the routines we have parallelized are most efficient for studies on
larger chemical systems, where the computational costs are severe and use of
parallel machines is desirable.

While Amdahl 's law oversimplified the speedup for the construction of the
Fock matrix, it emphasizes the problem of efficiently using large numbers of
processors. The time required to compute the one-electron portion of the
nuclear gradient for imidazole with the cc-pvtz basis was 645 sec on the Delta,
and has become the bottleneck for computing the nuclear gradient on a large
number of processors. Likewise, the total time per SCF iteration was 78 sec,
which is only a speedup of 150 for 512 nodes. In order to gain overall efficiency
for a large number of processors, large portions of the existing serial code,
which on a single processor is computationally insignificant, will have to be
modified.

Acknowledgements. This research was performed in part using the Intel Touchstone Delta System of
the Concurrent Supercomputing Consortium. Access to this facility was provided by the United
States Department of Energy. We would also like to acknowledge Sharon Brunett and Dr. Heidi

Direct-SCF algorithm on parallel computer architectures 299

Lorenz-Wirzba from Caltech for allowing us early access to the Delta via the "friendly users"
program. We would also like to thank Drs Ron Shepard and Robert Harrison for many useful
comments on the manuscript.

References

1. Alml6f J, Faegri K, Korse11 K (1982) J Comput Chem 3:385
2. Siegbahn PEM (1984) Chem Phys Lett 109:417
3. Olsen J, Roos BO, Jorgensen P, Jensen HFA (1988) J Chem Phys 89:2185
4. Knowles PJ, Werner HJ (1988) Chem Phys Lett 143:514
5. Feyereisen M, Nichols J, Oddershede J, Simons J (1992) J Chem Phys 96:2978
6. Feyereisen M (1990) Univ of Minnesota Ph.D. Thesis 67
7. Dupuis M, King HF (1977) I n t J Quantum Chem 11:613
8. Harrison RJ (in press) Int J Quantum Chem
9. Feyereisen M, Kendall RA, Nichols J, Dame D, Golab J (in preparation)

10. Dunning THJr (1989) J Chem Phys 90:1077
11. Kendall RA, Dunning TH Jr, Harrison RJ (accepted J Chem Phys)
12. L/ithi HP, Mertz JE, Feyereisen M, Alml6f J (1992) J Comput Chem 13:160

